on
Piezoelectric Coupling – Deriving the Full Governing Equations
Piezoelectric materials are fascinating: they generate electricity when squeezed and deform when subjected to electric fields. This two-way coupling between mechanical and electrical fields makes them indispensable in devices like:
- Ultrasound transducers
- MEMS sensors and actuators
- Energy harvesters
- Precision control systems
In this post, we derive the strongly coupled PDE system that governs linear piezoelectricity — where displacement and electric potential are fully interdependent.
Field Variables
We work with the following:
- $\mathbf{u}$: Displacement vector
- $\phi$: Electric potential
- $\boldsymbol{\varepsilon}$: Strain tensor
- $\boldsymbol{\sigma}$: Cauchy stress tensor
- $\mathbf{E}$: Electric field ($E_i = -\partial \phi / \partial x_i$)
- $\mathbf{D}$: Electric displacement (flux density)
Material constants:
- $\mathbf{C}$: Elasticity (stiffness) tensor
- $\mathbf{e}$: Piezoelectric tensor
- $\boldsymbol{\varepsilon}^S$: Permittivity tensor (at constant strain)
Strain–Displacement and Electric Field–Potential
Strain tensor (small deformation assumption):
\[\varepsilon_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)\]Electric field vector:
\[E_i = -\frac{\partial \phi}{\partial x_i}\]Coupled Constitutive Laws
Stress–Strain–Electric Field:
\[\sigma_{ij} = C_{ijkl} \varepsilon_{kl} - e_{kij} E_k\]Electric Displacement–Strain–Electric Field:
\[D_i = e_{ikl} \varepsilon_{kl} + \varepsilon^S_{ik} E_k\]This defines the bidirectional electromechanical coupling:
- Mechanical strain creates electric displacement
- Electric field induces mechanical stress
Governing PDEs
Mechanical Equilibrium
No body forces or inertia assumed:
\[\frac{\partial \sigma_{ij}}{\partial x_j} = 0\]Substitute stress:
\[\frac{\partial}{\partial x_j} \left( C_{ijkl} \varepsilon_{kl} - e_{kij} E_k \right) = 0\]Gauss’s Law for Dielectrics
No free charges:
\[\frac{\partial D_i}{\partial x_i} = 0\]Substitute electric displacement:
\[\frac{\partial}{\partial x_i} \left( e_{ikl} \varepsilon_{kl} + \varepsilon^S_{ik} E_k \right) = 0\]Final Coupled PDE System
Mechanical PDE:
\[\frac{\partial}{\partial x_j} \left( C_{ijkl} \varepsilon_{kl} - e_{kij} \frac{\partial \phi}{\partial x_k} \right) = 0\]Electrical PDE:
\[\frac{\partial}{\partial x_i} \left( e_{ikl} \varepsilon_{kl} - \varepsilon^S_{ik} \frac{\partial \phi}{\partial x_k} \right) = 0\]With strain defined by:
\[\varepsilon_{kl} = \frac{1}{2} \left( \frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k} \right)\]Boundary Conditions
Mechanical:
- Dirichlet (Displacement): $\mathbf{u} = \bar{\mathbf{u}}$
- Neumann (Traction): $\boldsymbol{\sigma} \cdot \mathbf{n} = \bar{\mathbf{t}}$
Electrical:
- Dirichlet (Voltage): $\phi = \bar{\phi}$
- Neumann (Charge Flux): $\mathbf{D} \cdot \mathbf{n} = \bar{q}$
These conditions are applied on respective boundary segments depending on device geometry and loading.
Practical Implementation: Voigt Notation
For numerical implementation, we typically rewrite these in matrix (Voigt) form:
- $\boldsymbol{\varepsilon} \in \mathbb{R}^6$
- $\boldsymbol{\sigma} \in \mathbb{R}^6$
- $\mathbf{E}, \mathbf{D} \in \mathbb{R}^3$
Then the constitutive relations become:
\[\boldsymbol{\sigma} = \mathbf{C} \boldsymbol{\varepsilon} - \mathbf{e}^T \mathbf{E}\] \[\mathbf{D} = \mathbf{e} \boldsymbol{\varepsilon} + \boldsymbol{\varepsilon}^S \mathbf{E}\]Where:
- $\mathbf{C}$ is the $6 \times 6$ stiffness matrix
- $\mathbf{e}$ is the $3 \times 6$ piezoelectric matrix
- $\boldsymbol{\varepsilon}^S$ is the $3 \times 3$ dielectric matrix
This is the form used in most FEM solvers and PINN loss functions.
Real-World Applications
- Actuators – voltage → precision displacement
- Sensors – strain/stress → voltage
- Energy harvesters – vibration → power
- Ultrasound devices – bidirectional transduction
- MEMS and NEMS – integrated electromechanical control
Note: If you spot any errors or have suggestions for improvement, please feel free to write to us in our members-only chat. We’ll be happy to update and improve the material for everyone’s benefit.
Thanks and Happy Learning
Team Elastropy